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ON A PROBLEM IN THE THEORY OF THE
UNIDIRECTIONAL REGENERATOR
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Abstract—An analytical solution of the unidirectional regenerator problem is presented. The effectiveness
of a regenerator at any arbitrary distance from the inlet is defined in terms of dimensionless groups deter-
mining the problem, computed for a wide range of parameters, and given in a series of graphs. While re-
taining the limitation of equal heat capacities and constant heat-transfer coefficients for hot and cold gas
streams, the analytical treatment differs from the conventional methods of attack in that:

(1) No simplifying assumptions are made with regard to the material properties and dimensions of the
heat storage matrix other than postulating that the thermal conductivity of the solid be zero in the direc-
tion of gas flow.

(2) No assumptions are needed regarding the nature of the longitudinal temperature profile along the
regenerator.

Local effectiveness graphs, which describe the operation of a unidirectional regenerator in cyclic

operation, are of the type heretofore available only for ordinary recuperators.

NOMENCLATURE i imaginary unit, i = /(—1);
A, integration constant [equations (12), i J, subscripts denoting sequences of inte-
(13), (15)]; heat-transfer area [equa- gers 1,2,3,...;
tions (24) to (26)]; k, thermal conductivity of plate [Btu/(h
a, halfthickness of plate [ft]; ft degF)];
B, a convenience parameter, defined in M, frequency parameter, dimensionless,
equation (26); M = J(')2);
b, halfdistance between two plates [ft]; M*,  same, defined in terms of M: M* =
C, amplitude of T, defined by equation ME;
(19a); Np;,  Biot number, dimensionless, Ny, =
c, heat capacity of fluid [ Btu/(ft* degF)]; ha/k;
» heat capacity of fluid [ Btu/(Ib degF)]; q, a transform variable, s = ¢?;
e, base of natural logarithms, also writ- 0, heat energy [Btu];
ten exp; Q.,2» quantity of energy absorbed or given
Jofo fE ¥, frequently recurring groups de- up by the plate during half cycle
fined in terms of hyperbolic functions [Btu];
and trigonometric functions immedi- R, a convenience parameter, R = (1 +
ately following equation (19a); MM/Npg;;
G, mass velocity of fluid [1b/(h ft?)]; r, radius of a contour of integration in
do 95, groups similar to the f, f, described the complex plane s;
above, defined ibidem; S, a convenience parameter, defined in
h, surface (film) heat-transfer coefficient equation (20a);
in Newtonian heating or cooling s, complex frequency (Laplace trans-
[Btu/(h ft? degF)]; form variable);
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temperature ratio, t/t,;

fluid temperature [°F];

, temperature of incoming hot stream

[F1;

T, temperature of incoming cold stream
['F];

t, plate temperature referred to mean
base temperature zero [degF];

p fluid temperature referred to mean
base temperature zero [degF|;

> maximum amplitude of fluid tempera-
ture oscillation at entry to regenera-
tor. It is equal to one half of the
temperature difference between the
incoming streams [degF];

t, same as t, only at the surface of plate;

U, a convenience parameter, defined in
equation (20a);

v, fluid velocity [ft/h];

S

X, distance along the direction of flow
[ft];
Vs distance along the direction normal to

the direction of flow [ft].

Greek symbols

a, thermal diffusivity of the plate [ft?/h];

B a root of the equation f tan f =
Ngi/(1 + n);

7, a finite real number greater than zero

€*, phase parameter, defined in equation
(19a);

¢, c* evaluated at £ = 1;

€.  phase parameter, defined in equation
(26);

L, “non-dimensional” time,
{ = a(vt — x)/va?;

1, “non-dimensional” distance along the
plate, n = xh/(c,bpv);

0, temperature ratio £,/t,;

£, thickness or depth ratio, £ = y/a;

P fluid density [1b/ft*];

T, time [h];

Tos length of total cycle [h];

Y, effectiveness, a dimensionless ratio.

Its definition follows the statement of
equation (26):
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w, frequency [A™'];

' modified frequency, dimensionless,
@ = wa*ja.
f the bar over a letter denotes a Laplace-

transformed function. Thus f(s) =

x

[ exp [=s{] f(0) d¢ for any function

0
ffor which this operation is defined.

1. INTRODUCTION

ALTHOUGH the principle of regenerative heat
exchangeis quite common, and regenerators have
been built for many years, the underlying theory
and accurate mathematical descriptions did not
appear until the second and third decades of this
century.

In its earliest stages, the theory was highly
approximative and utilitarian. Two main trends
may be discerned in its development : on the one
hand, in the industry concerned with the con-
struction of high-temperature air preheaters. the
temperature distribution in the direction of flow
was usually assumed to be the same as in a
recuperator operating under similar conditions,
while the temperature distribution in the brick
normal to the direction of flow was studied by
postulating mean temperatures or making plaus-
ible assumptions about the nature of such tem-
perature profiles. The resulting solutions were
semi-empirical, with constants taken from the
wealth of experimental data obtained in building
and operating blast furnace stoves and air pre-
heaters for similar industrial applications. A
good description of this approach is given by A.
Schack [1].

On the other hand, the designers of low-tem-
perature regenerators to be used in liquefaction
of air who worked with heat storage matrices
made of thin strips of aluminum or steel postu-
lated no thermal gradients in the material. They
studied the temperature distribution along the
regenerator without first assuming that it would
be similar to that found in a comparable re-
cuperator.

Attempts were also made to obtain a general
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mathematical description of regenerative heat
transfer without assuming infinite conductivity
of the matrix or prescribing a certain mean
temperature distribution along the regenerator,
but the absence of effective computing machinery
made the solution of such descriptions im-
practicable. Thus Schmeidler [2] wrote down a
set of integral equations for the cyclic steady state
of a regenerator and indicated an approximative
solution in terms of mean temperatures. Acker-
mann [3] presented a detailed theory of re-
generators which, however, yields a solution for
a given case only after repeated calculations
which lead to a cyclic steady state. Lowan [4]
offered a solution for a regenerator with cylindri-
cal heat storage matrix. His solution requires
repeated summing of several series in terms of
Bessel functions of imaginary argument. The
widely used textbook by Jakob [5] presents the
set of partial differential equations and boundary
conditions describing the problem in question
with the remark that the analytical solution is
difficult and with a brief reference to the work of
Ackermann cited earlier.

A comprehensive bibliography of the various
attempts at solution of the regenerator problem
is given by Hausen [6] (scattered in footnotes
throughout the text).

Finally, to conclude this introduction, a
word about the relation of the present work to
Hausen’s standard treatise on the subject.
Hausen, whose exhaustive monograph [6] on
recuperators and regenerators covers the state
of the theory up to 1950, bases his method of
solution on decomposing the cyclic temperature
behavior of the gas into a base oscillation and the
higher harmonics. The main oscillation is
again assumed to correspond to the temperature
distribution in a recuperator, while the higher
harmonics describe the behavior of a purely
regenerative nature. The method is used to
treat both the unidirectional and the counter-
current cases with many refinements of great
practical significance. However, the fundamental
assumption that the main oscillation of a re-
generator is identical with the temperature dis-
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tribution along a recuperator imposes the re-
quirement that time-mean temperatures be used,
and special overall heat-transfer coefficients have
to be defined. For actual calculations Hausen
introduces a “heat-pole” method which entails
considerable computational or graphical effort
and which, therefore, is offered on several levels
of complexity (and precision).

By comparison, the solution offered below
treats only the unidirectional case with the usual
assumption of zero thermal conductivity in the
solid matrix in the direction of flow, and retain-
ing the limitation of equal heat capacities and
constant heat-transfer coefficients for hot and
cold gas streams. No other restrictions are
placed on the thermal properties of the heat
storage material or on its dimensions. The solid
matrix is taken to consist of an array of parallel
plates of finite thickness and length. The method
of solution, however, could also be applied,
with appropriate modifications, to a matrix
consisting of cylindrical rods disposed in the
direction of the fluid flow or to a matrix made up
of spheres of finite thermal conductivity. The
thermal properties of the fluid, its velocity,
duration of the cycle, and regenerator length are
arbitrary.
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Because of the complexity of the final solution,
and in order to make the results readily acces-
sible for possible use, the solution was carried out
in terms of convenient non-dimensional para-
meters, calculated on an electronic computer
for a wide range of these parameters, and pre-
stented in graphical form on Figs. 1-6.
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FIG. 6. Regenerator effectiveness.

2. DISCUSSION OF THE PROBLEM
AND SOLUTION

Consider an array of parallel plates, each plate
being 2a units thick and separated from the next
plate by the distance of 2b units of length. Be-
cause of symmetry, it is sufficient to consider one
half of a plate extending in a Cartesian coordin-
ate system from x = 0 to any desired length in
the direction of positive x, and from y = 0 at
the center of the plate to y = a at the surface of
the plate.

The plate is in contact with a well mixed layer
of fluid of thickness 2b of which, again because of
symmetry, only one half, b units thick, is con-
sidered. The fluid entersat x = O at a temperature
exp [ —iwt] normalized about the average in-
coming temperature, and at a constant mass flow
rate, moving in the direction of positive x. As it

proceeds along the plate, it exchanges the heat
energy with the plate according to Newton’s
[7] law of cooling and heating of bodies in air.
The plate is assumed to have zero conductivity
in the x-direction and finite conductivity, k, in
the y-direction.

The foregoing verbal description may be
rendered analytically in dimensionless form as
follows: in the plate

a1 (1)
o o
and in the fluid
00
o i @
an
with the boundary conditions
oT
= =Ng0 - T =1 3
aé NB;(G )9 é ( )
B=exp[~i0], n=0 @
oT
_— = = 5
3t 0, ¢=0 %)
T =0, {=0. (6)

Equations (1) and (2) may now be solved, sub-
ject to conditions (3) through (6), using the Lap-
lace transform. Let

) = T exp [—sC]f(0) dL.

Then equations (1) through (5) are, in terms of the
transform variables,

T _

] _

%=—(9—T), =1 (8)
dT _
K Ng@-T), ¢=1 ©®

1

g=s+iw’ n=20 (10)
dT
@0 =0 (11)
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Condition (6) has been incorporated into equa- whence

tion (7). J
A solution of equations (7) and (11) is, for any = . (13)
i, with s = g2, (9/Ng;) sinh g + cosh g

If, now, the value of @ from equation (13) is
substituted into a solution of (8), and the condi-
tion (10) is applied, the result is

T = A cosh g¢. (12)

Condition (9) serves to determine A4 in equation

(12): 7 Ag sinh g 1
= — '+ 14
NBi ,7 s + iCU/ ( )
aT — Agsinh g = N0 — A cosh g). Elimination of 8 from equations (13) and (14)
il P leads to
A= ! (15)
(s + iw') {[(1 + n)/Ng;] qsinh g + cosh ¢}
and thus to solutions of equations (7) and (8).
T = A cosh g¢ (16)
o 1 An
6= ;m’ - N;qsmhq (17)

where A is given by equation (15).
The return from the complex frequency plane s to the domain of the variable { is effected by
means of the inversion integral,
y+io
T = 1 exp [s{] cosh g¢& ds (13
2 (s + i) {[(1 + n)/Ng;] qsinh g + cosh g} )

y—iw

which may be evaluated using residue theory. In particular, the only residue of interest is that due to
the simple pole s = —iw’ in the complex s-plane. The residues at the poles of the expression
{[(1 + n)/Ng] qsinh g + cosh g} ~* contribute only to the transient part of the solution, which is
of limited interest in actual operation of a regenerator and will not be discussed here. It is easily
seen that they contribute nothing to the cyclic steady-state part of the solution. Indeed, setting the
expression inside the square brackets equal to zero, one obtains the transcendental equation
gtanhg = —Ng/(1 + 11) or, for a complex ¢ = iff, ftan f = Ng/(1 + #). The roots of this equation,
written in terms of s = ¢°,i.e. —p? fori = 1,2,3,..., provide the dampmg factor, exp [ — p?{], which
tends to zero as steady state is approached and { grows large.

The simple pole s = —iw’ lies inside the contour delimited by the straight line s = y, where y
is any real positive number, and that portion of the circle of radius r, (r — <o) with the origin as
center, which is to the left of this line. The theory of residues [ 8] applies, with the result that

T lim exp [s¢] cosh \/(s¢)
s~ (8 + 1) {[(1 + 7)/Ng] (/s) sinh (/s) + cosh (\/9)}
B exp [ —ie'{] cosh [\(w'/2) (i — 1)¢]
[ + /NG — 1) J(w/2)sinh [{/(w/2) (i — 1] + cosh [(i — 1) {/('/2)]

(19)
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where \/(— ') = (i — 1)/(@'/2).

Applying the inversion integral to equation (17) and using the theory of residues provides the
value of

6 = exp [ —iw'(]
- n(i — 1) /(@/2) sinh [(i — 1) \/(0'/2)] 20)
[ (1 +n)G—1)J(@/2)sinh [(i — 1)/(@/2)] + Ny cosh [(i — 1) \/(«'/2)]
After a series of elementary transformations and simplifications, which have been relegated to

Appendix 1, and upon taking the real parts of the final results, equations (19) and (20) become,
respectively, (19a) and (20a):

T= Ccos(w'{ + €% (19a)

where

C - cosh? M* — sin? M* %
- ,:2R2(sinh2 M + sin®* M) + 2R[f.g, — g.) + f{g; + g.)] + cosh®* M — sin> M
iR, — g + f] — f¥[R(g, + g) + fi]

¢* = arctan
JE[Rs — gJ + f] + f2[RG@g, + g) + ]
and
R = (1 + n)M/Ny;; f. = cosh M cos M
fs = sinh M sin M
M = J('/)2) = J(wd®*2e) = \/(na®[azy); g. = cosh M sin M
g, = sinh M cos M
M* = £ J(0')2) = /(wy?*/20); f¥ = cosh M* cos M*
f¥ = sinh M* sin M*
0 = /(S* + U?) cos (w'{ + arctan U/S) (20a)
where
U - —nM(sinh M cosh M + sin M cos M)
"~ Ng[(1 + 2R?)sinh> M — (1 — 2R?*)sin? M + 1 + 2R(sinh M cosh M — sin M cos M)]
S—1+U 2R(sinh* M + sin? M) + (sinh M cosh M — sin M cos M)

sinh M cosh M + sin M cos M

Equation (19a) describes the thermal response anywhere in a plate exposed to a fluid which enters
at x = 0 at the temperature exp [ —iwt] and moves along the plate. The fluid, in turn, behaves
according to equation (20a) as it exchanges its energy with the plate in its progress in the direction
of the increasing x. Taken together, these two equations describe the energy transfer from the hot
fluid to the cold fluid in a cyclic steady operation of a unidirectional regenerator. It is difficult,
however, to envisage a regenerator ““driven” by a fluid which enters the heat storage matrix with the
time-temperature behavior of a perfect sine wave. A regenerator is more likely to be operated by
alternating the incoming streams in an on—off manner of a square wave. A solution corresponding
to such input is obtained by performing a harmonic analysis of the desired arbitrary fluctuation,
calculating the temperatures T and 6 for each harmonic of the resulting series, and summing.
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In the subsequent analysis the square waveform will be taken to extend from + 1 (entering hot
stream, first half of the cycle) to — 1 (entering cold stream, second half of the same cycle). The actual
fluid temperature, T, is then recovered, provided the temperature of the incoming hot stream, T,
the temperature of the incoming cold stream, T,, and the solution # are known:

. 2T, - T, — T,
T, - T.

Decomposing the square wave in the usual manner (Fourier [9], p. 143) and summing the har-

monic components one obtains the plate temperature

4 Zx C,
T = — It e .
- P sin (@} + ¢;) (22)

j=1

(21)

and the fluid temperature

4 JS; + Uy

i 2 — 1
j=1

with the coefficients C;, S, and U; written in terms of the component parameters M ;= \/ [(2J~

Dw'/2] = J(wy/2)and R; = (1 + n)M /Ny,

It should be noted that equations (22) and (23) could have been obtained in a more direct manner
by writing the Laplace transform of a square wavet into the right-hand side of equation (10) and
repeating the development which led to equations (19a) and (20a). However, the method followed
here of obtaining the response to a harmonic excitation first and synthesizing afterwards affords
greater flexibility. It presents the building blocks from which a solution to a problem involving an
arbitrary forcing function may be constructed with comparative ease.

) U;
0 sin (w;{ + arctan f) (23)

j

3. INTERPRETING THE SOLUTIONS AND USING THEM

Although equations (22) and (23) may be used to gain some insight into the interrelated tempera-
ture fields of the gas and the solid and their dependence on time and space, their importance to the
designer of a regenerative system is secondary. Of more interest to the designer is the problem of
effective utilization of energy and of optimum use of the heat storage material. In order to provide
an answer to this problem, it is necessary to calculate the quantity of heat alternately stored in and
delivered by the heat storage matrix at any given point along the regenerator. This may be done by
calculating the heat transferred from the gas to the surface of the plate:

dQ = hA(6 — T),dr (24)
where dQ is the quantity of heat transferred during the time interval dt, and T is evaluated at the
surface of the plate. Integrating over a half cycle, we obtain

t0/2 T0/2
0 0

Integration over the total cycle would serve no useful purpose since a cyclic steady state is presumed
to exist and the integral of dQ for the whole period is equal to zero. On performing the operations
indicated in equation (25) on the expressions for 6 and T given in equations (22) and (23)and simpli-

5Tq

1
—tanh —,
TS an 4
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fyingt the following expression for the quantity of heat entering or leaving the plate at any position

x during a half period is obtained :
Mt 8N 1 (2 — ln2x (@ — Um2x

Q.2 = 27;’2" z Ty {Bj cos [T + €,,;| — C;cos v - €| (26)

j=1

B; = \/(SZ + U?

where

and
€, ; = arctan (Uy/S)).

The group hAt,z,/2 represents an ideal amount of heat which would be exchanged if the temperature

of cold stream could be raised to the entrance temperature of the hot stream. The remaining factor

in equation (26) is the local effectiveness of any position in a unidirectional regenerator. It will be
denoted by the Greek letter ¥. Thus, equation (26) becomes

hAtz,

Qt0/2 - 2

b4 (26a)

The use of a local effectiveness ¥ as a measure of the operational efficiency of a regenerator
represents a departure from the more general definition (e.g. Jakob [5], p. 268) which sought to re-
late the efficiencies of regenerators and recuperators. The purpose of the present paper is more
direct: to provide the designer of a unidirectional regenerator with the effectiveness of the system
at any dimensionless length 7. The results are given on Figs. 1-6, where ¥ is plotted against the
frequency parameter M for a variety of Biot numbers. Each figure represents a different value of the
distance parameter xh/c,bpv in an increasing sequence from 0 to 10. The sequence is sufficiently
dense, so that linear interpolation from figure to figure is possible. The results may be read with an
accuracy of one or two per cent which is thought to be sufficient in the light of our imperfect know-
ledge of the thermal properties of the gas stream, of the solid matrix, and of the film coefficient h.

The ratio x/v which is used in the formulation of the distance parameter xh/c,bpv also appears in
the definition of dimensionless time, and in the arguments of the trigonometric functions in equation
(26), where it is divided by 7,/2. Although it represents but a negligible fraction of the total period
on the wide range covered by Figs. 1-6, it was carried in the development and retained in equation
(26). In numerical applications, several values of the ratio x/(vt,) were tried and the results compared.
At high frequency numbers (M = 5), the values of ¥ were found to be lower by less than 0-005 for
x/(vt,) = 001 than the corresponding results for x/(vt,) = 0-001. The agreement at low frequency
numbers was within the computational accuracy. Figures 1-6 were plotted from the results computed
for ratios x/(vty) = 00001 and x/(vty) = 0-001, but the scale is such that the effect of the parameter
x/(v1,) cannot be seen in any case.
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APPENDIX 1
Reduction of Complex Solutions (19) and (20) to their Real Parts [ Equations (19a) and (20a)]
Equation (19) was written :
exp [—iw'{] cosh [/('/2) (i — 1)¢]
[(1 + 7)/Ng] (i = 1) J(@'/2) sinh [\/(@'/2) (i — 1)] + cosh [\/(w'/2) (i — 1)]

Using the identities

sinh (¢ — ib)= sinhacos b — i cosh asin b
cosh(a — ib) = coshacosb — isinhasinb

and the variables f, f,, g., g, defined in the text immediately following equation (19a), equation (19)
may be written

exp [—io i] (= i)
~ [+ n)/Ng Mg, ~ 9 (%+mﬂ+ﬂ~m
B exp [—iw (] (f* — if
-R%—M+L—M%+w+ﬂ

Furthermore, let E = R(g, — g.) + f.and F = R(g, + g¢.) + f, and also C* = f*E + f*F,
D* = f¥E — f*F. Then

exp [—iw'{] (C* — iD¥)
E* + F? '
From the definition of E and F and upon squaring,
E? + F* = 2R?*(sinh? M + sin* M) + 2R[ fi(g, — g.) + f{gs + 9.)] + cosh?* M — sin? M

while the real part of the numerator is C* cos w'{ — D* sin w'(.

T:

An application of the trigonometric identity

C* cos w'{ — D* sin '{ = \/(C** + D*?) cos [w'{ + tan™ '(D*/C*)]
leads to
o _ €+ D)
- E2 + F2

But C*? + D*? = (E? + F?)(f*? + f*?) from the definition of C* and D* and upon squaring.
Therefore

cos (w'{ + €*).

o JIE + P+ 3]
- EZ + F2

\/(cosh" M¢ — sin? Mé) cos (@ + ¢

cos (w'{ + €¥%)

E2+F2

where ¢* = tan~! (D*/C*), and where the definition of f*, ¥ has been used. In order to obtain the
final form of equation (19a), the variables E2, F2, C* and D*, which were introduced for convenience,
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are written out in full. This results in T = C cos (w'{ + €¢*) with

C - cosh? M* — sin? M* ?
- —sin® M

2R*(sinh® M + sin®> M) + 2R[fgs — 9. + f{gs + gJ)] + cosh®* M

and
SR, — g0 + f] + f¥IR@g, + g0 + f]

* = arctan

which enters into equation (19a).
Equation (20) was written

~ N ni — 1) /(@'/2) sinh [(i — 1) /(@//2)]
6 = exp [~iw?] [1 T+ )i — 1) J/2)sinh [ — 1) J(@'/2)] + N cosh [(i — 1)\/(w’/2)]:|'

Using the definitions and identities given earlier in this Appendix, ¢ is transformed into

= —_ / 1 _ .
0= exp [ —io(] [ (1 + DM(g, — 9 — ilg, + 9] + Nalfi — lf)]

Letg, —g. = J,g9, + 9. = K. (1 + n)MJ + Ny f. = X,and (1 + n)MK + Npf, = Y, so that

M(J — IK ., M[(JX + KY) + JY — KX)i
6 = exp [ —iw'(] [1 - %%)] = exp [—iw'{] [1 _ I X2)+ Y(2 )l]]

and
e nM e :
0 = cosw'l — isinw'{ — m{(cosw{ —isinw')[JX + KY + i(JY — KX)]}.

Taking only the real part of 8 (which was its original definition as a certain temperature ratio),
it becomes

8 = cos 'l — =10 __[JX + KY)cos 'l + (JY — KX) sin (]
X2 +Y :
_ [ mmux + KY)] . MUY ~ KX) ’
- X7+ 1?2 @ X+ yz ¢

= Scosw'{ — Usinw'{ = \J(§* + U? cos [ + tan™' (U/S)].

The final expression is equation (20a). The convenience parameters written out in detail are
JX + KY = Ny[2R(sinh* M + sin> M) + (sinh M cosh M — sin M cos M)]
JY — KX = —Npg{sinh M cosh M + sin M cos M).
These, in turn. lead to the expressions for § and U :
3 nM[2R(sinh* M + sin? M) + (sinh M cosh M — sin M cos M)]
Ng[(1 + 2R?*)sinh* M — (1 — 2R*)sin® M + 1 + 2R(sinh M cosh M — sin M cos M)]
_ nM(sinh M cosh M + sin M cos M)
Ng[(1 + 2R?*)sinh* M — (1 — 2R?*)sin® M + 1 + 2R(sinh M cosh M — sin M cos M)]

S=1

U:
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which completes the development of equation (20a).

APPENDIX 2
Integration of the Energy Equation

The integration is to be performed on the known functions of time, the function  as given in
equation (23), and the function T given in equation (22) and evaluated at y = q, ie. at & = L.
Before proceeding, dimensionless time ( is converted to the real time, 7, and equation (25) becomes

T0/2

4hA . x . X
Oz = —— - " B;sin | w; - + ¢ ;| — Csin |, -5 + ¢ pdr

Jj=1 0

4hA | ! B.cos |w < x) + € C.cos|w;ft al + j'}t”/z
= - — —_— . : — — 1 ; w; — — €;
T (2] _ 1)0)] J J v g.J J J v J o
1

4hAz, E 1 T, X o X
= -5 (—2]_i—1? {Bj €os [a)J(? - ;) + 69'{' ~ C;cos [w,<? - + ¢
j=1
X X
— B;cos <w,-; - €g.j-> + Cjcos <a)j—£ - e,)}

The coefficients B; and C; may be collected using the identity

m+2n . m
1 J—
5 sn2,

cos(m + n) — cosn = —2sin

leading to the following form of the expression for Q, ,,:

4hAt ; 1 @i - b x(2j — 1)2= C2i—1
Oua = z @ - 17 {B" - [ e
7=

— C;sin [Qj S/ + Ej] - sin QL__”IE}

2 UTq 2

Further simplification is achieved by noting that sin [(2j — Dm/2 + ¢;] = —[(—1F"'] cos ¢,
This leads directly to equation (26):

hdet, 8 N1 2 — 1y 2x (2j — 1) 2x
Qto/z = ~—2—0gp E:T)E {B] COS [TT -+ eg.j — C}. cos ,_.T_O___?, - Glp-
=1

=
A special case of interest in many applications follows from the foregoing by noting that in the
limitasx - O ande¢, ; —» 0, B; — 1,

hdrgt, [ 8 N\ Cyeos ¢
Gz =757 [1 i z @ —17
T=1

This represents an infinitely short regenerator, or a regenerator in which the amount of energy
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carried by the fluid streams is so large compared to the heat capacity of the solid that the attenuation
of the stream temperature potential is negligible. The effectiveness of such regenerator is shown on
Fig. 1. It indicates the extent to which the heat storage in the solid is dependent on the capability of
the solid to absorb the energy supplied by an “inexhaustible” reservoir.

Résumé—Une solution analytique du probléme du régénérateur unidirectionnel est présentée. L efficacité
d’un régénérateur a n'importe quelle distance arbitraire de I’entrée est définie en fonction de groupes sans
dimensions qui régissent le probléme, calculée pour une large gamme de paramétres et donnée a l'aide
d’une série de graphiques. Bien qu’il tienne compte de I'hypothése restrictive de 1’égalité des capacités
thermiques et de la constance des coefficients de transport de chaleur pour des écoulements de gaz chaud
et froid, le calcul théorique différe des méthodes classiques de calcul en ce que:

(1) Acune hypothése simplificatrice n’a été faite au sujet des propriétés du matériau et des dimensions

de la matrice poreuse, en dehoes de celle qui suppose que la conductivité thermique du solide est nulle

dans le direction de 1'écoulement gazeux.

(2) On n’a besoin d’aucune hypothése sur la nature du profil longitudinal de température le long du

régénérateur.

Les graphiques d’efficacité locale, qui décrivent le fonctionnement cyclique d’un régénérateur uni-

directionnel, sont d’un type disponible jusqu'a présent seulement pour des récupérateurs ordinaires.

Zusammenfassung—Fs wird eine analytische Losung des Gleichstromregeneratorproblems gegeben. Die
Wirksamkeit eines Regenerators in beliebigem Abstand vom Einlass ist in Form dimensionsloser, das
Problem bestimmender Gruppen definiert, die fiir einen grossen Parameterbereich berechnet und in
einer Reihe von Diagrammen angegeben sind. Wéhrend einschriankend gleiche Wirmekapazititen und
konstante Warmeibergangskoeffizienten fiir den heissen und kalten Gasstrom beibehalten werden,
unterscheidet sich die analytische Behandlung von den konventionellen Methoden darin, dass:

(1) kein vereinfachenden Annahmen hinsichtlich der Materialeigenschafter und Dimensionen der

Wiirmespeichermasse gemacht sind ausser der Forderung, dass die Wirmeleitfihigkeit in Richtung

des Gasstroms Null ist;

{2) keine Annahmen iiber die Natur des Lingstemperaturprofils im Regenerator notwendig sind.

Ortliche Wirksamkeitsdiagramme, welche die Arbeitsweise des Gleichstromregenerators bei zyklischer
Beaufschlagung angeben, sind von der Art, wie sie bisher nur fiir gewShnliche Rekuperatoren zur Verfiigung

standen.

Anpnoranua—/laHO TeopeTHYecKOe pelleHHe 3ajaud AJIA TNPAMOTOYHOrO pereHepaTopa.
Hoopduument perenepaiuy Ha J1o60M NPOU3BOJILHOM PACCTOAHUM OT BXOXA NpENCTABIEH
GespasMepHLIMM IDYNNAaMH, ONpefelAIIMMH 3aladyy, KOTOPHE PACCYMTAHH AJA LINPOKOTO
AHANA30HA apaMeTPOB NPUBOJATCA B pAAe rpa@uKoB. B To BpeMA Kak coxpaHAeTcHd yCaoBHE
PABHOCTH TEINIOEMKOCTE! M MOCTOAHCTBA KO2(@uineHTOB TElI00OMeHa AJA MOTOKOB ropf-
4Yero M XOJIOAHOTO rasa, TeopeTwdeckuit aHauns OTIMYAETCH OT OOBIYHBIX METONOB MCCIENO-
BaHMA TEM, 4TO !

(1) He mpurMMaloTCA yHpoIaioliMe NpeIoJIOeHNA OTHOCHTEJBHO CBOWCTB MaTepuana
1 pPasMepoB TeVIOAKKYMYINpyoliel HaOMBKA 8a MCKIIOYEHNEM HYJIeBOM TeILIONPOBOTHOCTH
TBEPIOTO Tejla B HANPABICHUN TeUeHHUA rasa ;

(2) He Tpebyerca momyuieHUA O TPHMPOAEe NPOJOIHHOFO NMpPOQHIA TeMIepaTyps BIOIE
TeImI000MEeHHIKA .

Fpaduky JOKaIBHHEX KodPPUINEHTOB pereHepanyi, ONMNUCHBAKLIMX IUKINYECKYI0 paboTy
NPAMOTOYHOTO pereHepaTopa, NMPWHANIEXAT K TUNY rpaduKOB, MMEIOUMXCA JIO CHX IIOP

TOIBLKO JJIA OOBIYHBIX PEKYIepAaTHBHHEX TemI00GMEeHHNKOB,



